A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
نویسندگان
چکیده
Blood velocity and pressure fields in large arteries are greatly influenced by the deformability of the vessel. Moreover, wave propagation phenomena in the cardiovascular system can only be described considering wall deformability since blood is usually described as an incompressible fluid. However, computational methods for simulating blood flow in three-dimensional models of arteries have either considered a rigid wall assumption for the vessel or significantly simplified or reduced geometries. Computing blood flow in deformable domains using standard techniques like the ALE method remains a formidable problem for large, realistic anatomic and physiologic models of the cardiovascular system. We have developed a new method to simulate blood flow in three-dimensional deformable models of arteries. The method couples the equations of the deformation of the vessel wall at the variational level as a boundary condition for the fluid domain. We consider a strong coupling of the degrees-of-freedom of the fluid and the solid domains, and a linear membrane model (enhanced with transverse shear) for the vessel wall. The effect of the vessel wall boundary is therefore added in a monolithic way to the fluid equations, resulting in a remarkably robust scheme. We present here the mathematical formulation of the method and discuss issues related to the fluid–solid coupling, membrane formulation, time integration method, and boundary and initial conditions. Implementation is discussed and results with simple geometries as well as large subject-specific models are presented. 2006 Elsevier B.V. All rights reserved.
منابع مشابه
A Coupled Momentum Method to Model Blood Flow in Deformable Arteries
Blood velocity and pressure fields in large arteries are greatly influenced by the deformability of the vessel. However, computational methods for simulating blood flow in three dimensional models of arteries have either considered a rigid wall assumption for the vessel or significantly simplified geometries. Computing blood flow in deformable domains using standard techniques like the ALE meth...
متن کاملMulti-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network
In this article, we present a computational multi-scale model of fully three-dimensional and unsteady hemodynamics within the primary large arteries in the human. Computed tomography image data from two different patients were used to reconstruct a nearly complete network of the major arteries from head to foot. A linearized coupled-momentum method for fluid-structure-interaction was used to de...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملOutflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries
The simulation of blood flow and pressure in arteries requires outflow boundary conditions that incorporate models of downstream domains. We previously described a coupled multidomain method to couple analytical models of the downstream domains with three-dimensional numerical models of the upstream vasculature. This prior work either included pure-resistance boundary conditions or impedance bo...
متن کاملA Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys
Shoulder geometry of tool plays an important role in friction-stir welding because it controls thermal interactions and heat generation. This work is proposed and developed a coupled rigid-viscoplastic numerical modeling based on computational fluid dynamics and finite element calculations aiming to understand these interactions. Model solves mass conservation, momentum, and energy equations in...
متن کامل